

Welcome to django-getpaid’s documentation!

django-getpaid is a multi-broker payment processor for Django. Main features include:

	support for multiple payment brokers at the same time

	very flexible architecture

	support for asynchronous status updates - both push and pull

	support for modern REST-based broker APIs

	support for multiple currencies (but one per payment)

	support for global and per-plugin validators

	easy customization with provided base abstract models and swappable mechanic (same as with Django’s User model)

We would like to provide a catalog of plugins for django-getpaid - if you create a plugin please let us know.

Disclaimer: this project has nothing in common with getpaid [http://code.google.com/p/getpaid/] plone project.

This project uses semantic versioning [http://semver.org/].

Contents:

	Installation & Configuration

	Plugin catalog

	Settings

	Customization - Payment API

	Creating payment plugins

	Plugin registry

	Planned features

	History

Development team

Project leader:

	Dominik Kozaczko <https://github.com/dekoza>

Original author:

	Krzysztof Dorosz <https://github.com/cypreess>.

Contributors:

	Paweł Bielecki <https://github.com/pawciobiel>

	Bernardo Pires Carneiro <https://github.com/bcarneiro>

Sponsors:

	Sunscrapers [https://sunscrapers.com/]

You are welcome to contribute to this project via github [http://github.com] fork & pull request.

Indices and tables

	Index

	Module Index

	Search Page

Installation & Configuration

This document presents the minimal steps required to use django-getpaid in your project.

Get it from PyPI

pip install django-getpaid

We do not recommend using development version as it may contain bugs.

Install at least one plugin

There should be several plugins available in our repo. Each follows this
schema: django-getpaid-<backend_name>
For example if you want to install PayU integration, run:

pip install django-getpaid-payu

Enable app and plugin

Next, add "getpaid" and any plugin to INSTALLED_APPS in your settings.py.
Plugins have the format getpaid_<backend_name>:

INSTALLED_APPS = [
 # ...
 "getpaid",
 "getpaid_payu",
]

Create Order model

You need to create your own model for an order. It should inherit from
getpaid.models.AbstractOrder (if not, it must implement its methods)
and you need to implement some methods. It could look like this example:

from django.conf import settings
from django.db import models
from getpaid.models import AbstractOrder

class CustomOrder(AbstractOrder):
 buyer = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE)
 description = models.CharField(max_length=128, default='Order from mystore')
 total = models.DecimalField()
 currency = models.CharField(max_length=3, default=settings.DEFAULT_CURRENCY)

 def get_buyer_info(self):
 return {"email": self.buyer.email}

 def get_total_amount(self):
 return self.total

 def get_description(self):
 return self.description

 def get_currency(self):
 return self.currency

 # either one of those two is required:
 def get_redirect_url(self, *args, success=None, **kwargs):
 # this method will be called to get the url that will be displayed
 # after returning from the paywall page and you can use `success` param
 # to differentiate the behavior in case the backend supports it.
 # By default it returns this:
 return self.get_absolute_url()

 def get_absolute_url(self):
 # This is a standard method recommended in Django documentation.
 # It should return an URL with order details. Here's an example:
 return reverse("order-detail", kwargs={"pk": self.pk})

 # these are optional:
 def is_ready_for_payment(self):
 # Most of the validation will be handled by the form
 # but if you need any extra logic beyond that, you can write it here.
 # This is the default implementation:
 return True

 def get_items(self):
 # Some backends expect you to provide the list of items.
 # This is the default implementation:
 return [{
 "name": self.get_description(),
 "quantity": 1,
 "unit_price": self.get_total_amount(),
 }]

Tell getpaid what model handles orders

Put this inside your settings.py:

GETPAID_ORDER_MODEL = "yourapp.CustomOrder"

(Optional) Provide custom Payment model

If you want, you can provide your own Payment model. Read more in Customization - Payment API.

Note

Payment model behaves like django.auth.User model - after you use the original,
migration to a custom version is VERY hard.

Add getpaid to urls

urlpatterns = [
 # ...
 path("payments", include("getpaid.urls")),
]

Provide config for plugins

For each installed plugin you can configure it in settings.py:

GETPAID = {
 "BACKENDS":{
 "getpaid_payu": { # dotted import path of the plugin
 # refer to backend docs and take these from your merchant panel:
 "pos_id": 12345,
 "second_key": "91ae651578c5b5aa93f2d38a9be8ce11",
 "client_id": 12345,
 "client_secret": "12f071174cb7eb79d4aac5bc2f07563f",
 },

 # this plugin is meant only for testing purposes
 "getpaid.backends.dummy": {
 "confirmation_method": "push",
 },
 }
}

Prepare views and business logic

The logic for building an order is up to you. You can eg. use a cart application
to gather all Items for your Order.

An example view and its hookup to urls.py can look like this:

orders/views.py
from getpaid.forms import PaymentMethodForm

class OrderView(DetailView):
 model = Order

 def get_context_data(self, **kwargs):
 context = super(OrderView, self).get_context_data(**kwargs)
 context["payment_form"] = PaymentMethodForm(
 initial={"order": self.object, "currency": self.object.currency}
)
 return context

main urls.py

urlpatterns = [
 # ...
 path("order/<int:pk>/", OrderView.as_view(), name="order_detail"),
]

You’ll also need a template (order_detail.html in this case) for this view.
Here’s the important part:

<h2>Choose payment broker:</h2>
<form action="{% url 'getpaid:create-payment' %}" method="post">
 {% csrf_token %}
 {{ payment_form.as_p }}
 <input type="submit" value="Checkout">
</form>

And that’s pretty much it.

After you open order detail you should see a list of plugins supporting your currency
and a “Checkout” button that will redirect you to selected paywall. After completing
the payment, you will return to the same view.

Please see fully working example app [https://github.com/django-getpaid/django-getpaid/tree/master/example].

Next steps

If you’re not satisfied with provided Payment model or the
PaymentMethodForm, please see customization docs.

Plugin catalog

All plugins in alphabetical order.

Currently a lot of plugins is being developed or ported. Please stay tuned.

PayU

	PyPI name: django-getpaid-payu

	Repository: https://github.com/django-getpaid/django-getpaid-payu

	Original API Docs: https://www.payu.pl/en/developers

	Sandbox panel: https://merch-prod.snd.payu.com/user/login

	Currencies: BGN, CHF, CZK, DKK, EUR, GBP, HRK, HUF, NOK, PLN, RON, RUB, SEK, UAH, USD

Settings

	Core settings

	Backend settings

	Optional settings

Core settings

GETPAID_ORDER_MODEL

No default, you must provide this setting.

The model to represent an Order. See Customization - Payment API.

Warning

You cannot change the GETPAID_ORDER_MODEL setting during the lifetime of
a project (i.e. once you have made and migrated models that depend on it)
without serious effort. It is intended to be set at the project start,
and the model it refers to must be available in the first migration of
the app that it lives in.

GETPAID_PAYMENT_MODEL

Default: 'getpaid.Payment'

The model to represent a Payment. See Customization - Payment API.

Warning

You cannot change the GETPAID_PAYMENT_MODEL setting during the lifetime of
a project (i.e. once you have made and migrated models that depend on it)
without serious effort. It is intended to be set at the project start,
and the model it refers to must be available in the first migration of
the app that it lives in.

Backend settings

To provide configuration for payment backends, place them inside GETPAID_BACKEND_SETTINGS
dictionary. Use plugin’s dotted path - just as you put it in INSTALLED_APPS
- as a key for the config dict. See this example:

GETPAID_BACKEND_SETTINGS = {
 "getpaid.backends.dummy": {
 "confirmation_method": "push",
 "gateway": reverse_lazy("paywall:gateway"),
 },
 "getpaid_paynow": {
 "api_key": "9bcdead5-b194-4eb5-a1d5-c1654572e624",
 "signature_key": "54d22fdb-2a8b-4711-a2e9-0e69a2a91189",
 },
}

Each backend defines its own settings this way. Please check the backend’s documentation.

Optional settings

A place for optional settings is GETPAID dictionary, empty by default.
It can contain these keys:

POST_TEMPLATE

Default: None

This setting is used by processor’s default get_template_names()
method to override backend’s template_name.
The template is used to render that backend’s POST form.
This setting can be used to provide a global default for such cases if you use more
plugins requiring such template. You can also use POST_TEMPLATE key in
backend’s config to override the template just for one backend.

POST_FORM_CLASS

Default: None

This setting is used by backends that use POST flow.
This setting can be used to provide a global default for such cases if you use more
plugins requiring such template. You can also use POST_FORM_CLASS key in
backend’s config to override the template just for one backend.
Use full dotted path name.

SUCCESS_URL

Default: "getpaid:payment-success"

Allows setting custom view name for successful returns from paywall.
Again, this can also be set on a per-backend basis.

If the view requires kwargs to be resolved, you need to override

FAILURE_URL

Default: "getpaid:payment-failure"

Allows setting custom view name for fail returns from paywall.
Again, this can also be set on a per-backend basis.

HIDE_LONELY_PLUGIN

Default: False

Allows you to hide plugin selection if only one plugin would be presented.
The hidden plugin will be chosen as default.

VALIDATORS

Default: []

Here you can provide import paths for validators that will be run against
the payment before it is sent to the paywall. This can also be set on a
per-backend basis.

Customization - Payment API

Django-getpaid was designed to be very customizable. In this document you’ll
read about the Payment API which lets you customize most of the mechanics
of django-getpaid.

Since most Payment methods act as interface to PaymentProcessor, you can use
this to add extra layer between the Payment and the PaymentProcessor.

Basic Order API

	
class getpaid.models.AbstractOrder(*args, **kwargs)

	Please consider setting either primary or secondary key of your Orders to
UUIDField. This way you will hide your volume which is valuable business
information that should be kept hidden. If you set it as secondary key,
remember to use dbindex=True (primary keys are indexed by default).
Read more: https://docs.djangoproject.com/en/3.0/ref/models/fields/#uuidfield

	
get_return_url(*args, success=None, **kwargs) → str

	Method used to determine the final url the client should see after
returning from gateway. Client will be redirected to this url after
backend handled the original callback (i.e. updated payment status)
and only if SUCCESS_URL or FAILURE_URL settings are NOT set.
By default it returns the result of get_absolute_url

	
get_absolute_url() → str

	Standard method recommended in Django docs. It should return
the URL to see details of particular Payment (or usually - Order).

	
is_ready_for_payment() → bool

	Most of the validation is made in PaymentMethodForm but if you need
any extra validation. For example you most probably want to disable
making another payment for order that is already paid.

You can raise ValidationError if you want more
verbose error message.

	
get_items() → List[getpaid.types.ItemInfo]

	There are backends that require some sort of item list to be attached
to the payment. But it’s up to you if the list is real or contains only
one item called “Payment for stuff in {myshop}” ;)

	Returns

	List of ItemInfo dicts. Default: order summary.

	Return type

	List[ItemInfo]

	
get_total_amount() → decimal.Decimal

	This method must return the total value of the Order.

	Returns

	Decimal object

	
get_buyer_info() → getpaid.types.BuyerInfo

	This method should return dict with necessary user info.
For most backends email should be sufficient.
Refer to :class`BuyerInfo` for expected structure.

	
get_description() → str

	
	Returns

	Description of the Order. Should return the value of appropriate field.

Basic Payment API

AbstractPayment defines a minimal set of fields that are expected by
BaseProcessor API. If you want to have it completely your own way, make sure
to provide properties linking your fieldnames to expected names.

	
class getpaid.models.AbstractPayment(*args, **kwargs)

	
	
id

	UUID to not disclose your volume.

	
order

	ForeignKey to (swappable) Order model.

	
amount_required

	Decimal value with 4 decimal places. Total value of the Order that needs to be paid.

	
currency

	Currency code in ISO 4217 format.

	
status

	Status of the Payment - one of PAYMENT_STATUS_CHOICES. This field is managed using django-fsm.

	
backend

	Identifier of the backend processor used to handle this Payment.

	
created_on

	Datetime of Payment creation - automated.

	
last_payment_on

	Datetime the Payment has been completed. Defaults to NULL.

	
amount_paid

	Amount actually paid by the buyer. Should be equal amount_required if backend does not support partial payments.
Will be smaller than that after partial refund is done.

	
amount_locked

	Amount that has been pre-authed by the buyer. Needs to be charged to finalize payment or released if the transaction cannot be fulfilled.

	
amount_refunded

	Amount that was refunded. Technically this should be equal to amount_required - amount_paid.

	
external_id

	ID of the payment on paywall’s system. Optional.

	
description

	Payment description (max 128 chars).

	
fraud_status

	Field representing the result of fraud check (only on supported backends).

	
fraud_message

	Message provided along with the fraud status.

	
get_processor() → getpaid.processor.BaseProcessor

	Returns the processor instance for the backend that
was chosen for this Payment. By default it takes it from global
backend registry and tries to import it when it’s not there.
You most probably don’t want to mess with this.

	
get_unique_id() → str

	Return unique identifier for this payment. Most paywalls call this
“external id”. Default: str(self.id) which is uuid4.

	
get_items() → List[getpaid.types.ItemInfo]

	Some backends require the list of items to be added to Payment.

This method relays the call to Order. It is here simply because
you can change the Order’s fieldname when customizing Payment model.
In that case you need to overwrite this method so that it properly
returns a list.

	
get_form(*args, **kwargs) → django.forms.forms.BaseForm

	Interfaces processor’s get_form.

Returns a Form to be used on intermediate page if the method returned by
get_redirect_method is ‘POST’.

	
get_template_names(view=None) → List[str]

	Interfaces processor’s get_template_names.

Used to get templates for intermediate page when get_redirect_method
returns ‘POST’.

	
handle_paywall_callback(request, **kwargs) → django.http.response.HttpResponse

	Interfaces processor’s handle_paywall_callback.

Called when ‘PUSH’ flow is used for a backend. In this scenario paywall
will send a request to our server with information about the state of
Payment. Broker can send several such requests during Payment’s lifetime.
Backend should analyze this request and return appropriate response that
can be understood by paywall.

	Parameters

	request – Request sent by paywall.

	Returns

	HttpResponse instance

	
fetch_status() → getpaid.types.PaymentStatusResponse

	Interfaces processor’s fetch_payment_status.

Used during ‘PULL’ flow. Fetches status from paywall and proposes a callback
depending on the response.

	
fetch_and_update_status() → getpaid.types.PaymentStatusResponse

	Used during ‘PULL’ flow to automatically fetch and update
Payment’s status.

	
prepare_transaction(request: Optional[django.http.request.HttpRequest] = None, view: Optional[django.views.generic.base.View] = None, **kwargs) → django.http.response.HttpResponse

	Interfaces processor’s prepare_transaction().

	
prepare_transaction_for_rest(request: Optional[django.http.request.HttpRequest] = None, view: Optional[django.views.generic.base.View] = None, **kwargs) → getpaid.types.RestfulResult

	Helper function returning data as dict to better integrate with
Django REST Framework.

	
confirm_prepared(**kwargs) → None

	Used to confirm that paywall registered POSTed form.

	
confirm_lock(amount: Union[decimal.Decimal, float, int, None] = None, **kwargs) → None

	Used to confirm that certain amount has been locked (pre-authed).

	
charge(amount: Union[decimal.Decimal, float, int, None] = None, **kwargs) → getpaid.types.ChargeResponse

	Interfaces processor’s charge().

	
confirm_charge_sent(**kwargs) → None

	Used during async charge cycle - after you send charge request,
the confirmation will be sent to callback endpoint.

	
confirm_payment(amount: Union[decimal.Decimal, float, int, None] = None, **kwargs) → None

	Used when receiving callback confirmation.

	
mark_as_paid(**kwargs) → None

	Marks payment as fully paid if condition is met.

	
release_lock(**kwargs) → decimal.Decimal

	Interfaces processor’s charge().

	
start_refund(amount: Union[decimal.Decimal, float, int, None] = None, **kwargs) → decimal.Decimal

	Interfaces processor’s charge().

	
cancel_refund(**kwargs) → bool

	Interfaces processor’s charge().

	
confirm_refund(amount: Union[decimal.Decimal, float, int, None] = None, **kwargs) → None

	Used when receiving callback confirmation.

	
mark_as_refunded(**kwargs) → None

	Verify if refund was partial or full.

	
fail(**kwargs) → None

	Sets Payment as failed.

Creating payment plugins

In order to create a plugin for a payment broker, first you need to
write a subclass of BaseProcessor named PaymentProcessor
and place it in processor.py in your app.

The only method you have to provide is prepare_transaction()
that needs to return a HttpResponse subclass (eg. HttpResponseRedirect or TemplateResponse).
The use of all other methods depends directly on how the paywall operates.

To make your plugin available for the rest of the framework, you need to register it.
The most convenient way to do so is apps.py:

from django.apps import AppConfig

class MyPluginAppConfig(AppConfig):
 name = "getpaid_myplugin"
 verbose_name = "Some payment broker"

 def ready(self):
 from getpaid.registry import registry

 registry.register(self.module)

This way your plugin will be automatically registered after adding it to INSTALLED_APPS.

Detailed API

	
class getpaid.processor.BaseProcessor(payment: django.db.models.base.Model)

	
	
production_url = None

	Base URL of production environment.

	
sandbox_url = None

	Base URL of sandbox environment.

	
display_name = None

	The name of the provider for the choices.

	
accepted_currencies = None

	List of accepted currency codes (ISO 4217).

	
logo_url = None

	Logo URL - can be used in templates.

	
ok_statuses = [200]

	List of potentially successful HTTP status codes returned by paywall when creating payment

	
slug = None

	For friendly urls

	
static get_our_baseurl(request: django.http.request.HttpRequest = None, **kwargs) → str

	Little helper function to get base url for our site.
Note that this way ‘https’ is enforced on production environment.

	
prepare_form_data(post_data: dict, **kwargs) → Mapping[str, Any]

	If backend support several modes of operation, POST should probably
additionally calculate some sort of signature based on passed data.

	
get_form(post_data: dict, **kwargs) → django.forms.forms.BaseForm

	(Optional)
Used to get POST form for backends that use such flow.

	
abstract prepare_transaction(request: django.http.request.HttpRequest, view: Optional[django.views.generic.base.View] = None, **kwargs) → django.http.response.HttpResponse

	Prepare Response for the view asking to prepare transaction.

	Returns

	HttpResponse instance

	
handle_paywall_callback(request: django.http.request.HttpRequest, **kwargs) → django.http.response.HttpResponse

	This method handles the callback from paywall for the purpose
of asynchronously updating the payment status in our system.

	Returns

	HttpResponse instance that will be presented as answer to the callback.

	
fetch_payment_status(**kwargs) → getpaid.types.PaymentStatusResponse

	Logic for checking payment status with paywall.

	
charge(amount: Union[decimal.Decimal, float, int, None] = None, **kwargs) → getpaid.types.ChargeResponse

	(Optional)
Check if payment can be locked and call processor’s method.
This method is used eg. in flows that pre-authorize payment during
order placement and charge money later.

	
release_lock(**kwargs) → decimal.Decimal

	(Optional)
Release locked payment. This can happen if pre-authorized payment cannot
be fullfilled (eg. the ordered product is no longer available for some reason).
Returns released amount.

	
start_refund(amount: Union[decimal.Decimal, float, int, None] = None, **kwargs) → decimal.Decimal

	Refunds the given amount.

Returns the amount that is refunded.

	
cancel_refund(**kwargs) → bool

	Cancels started refund.

Returns True/False if the cancel succeeded.

Plugin registry

Plugin registry is a convenient way to handle multiple brokers that can
support different currencies and provide different flows.

Internal API

	
class getpaid.registry.PluginRegistry

	
	
register(module_or_proc)

	Register module containing PaymentProcessor class or a PaymentProcessor directly.

	
get_choices(currency)

	Get CHOICES for plugins that support given currency.

	
get_backends(currency)

	Get plugins that support given currency.

	
property urls

	Provide URL structure for all registered plugins that have urls defined.

	
get_all_supported_currency_choices()

	Get all currencies that are supported by at least one plugin,
in CHOICES format.

Planned features

These features are planned for future versions (in no particular order):

	translations

	paywall communication log (all responses and callbacks)

	Subscriptions handling

	cookiecutter for plugins

	django-rest-framework helpers

	async/await support

	admin actions to PULL payment statuses

History

Version 2.2.0 (2020-05-03)

	Add template tag

	Add helper for REST integration

Version 2.1.0 (2020-04-30)

	Definitions for all internal data types and statuses

	Full type hinting

	Fixed bugs (thanks to Kacper Pikulski [https://github.com/pikulak]!)

Version 2.0.0 (2020-04-18)

	BREAKING: Complete redesign of internal APIs.

	Supports only Django 2.2+ and Python 3.6+

	Payment and Order became swappable models - like Django’s User model

	Payment acts as customizable interface to PaymentProcessor instances (but be careful).

	Payment statuses guarded with django-fsm

	Broker plugins separated from main repo - easier updates.

Version 1.8.0 (2018-07-24)

	Updated project structure thanks to cookiecutter-djangopackage

	New plugin: pay_rest - New PayU API

	Updated following plugins:
- payu - legacy API still works on new URL

	Dropped support for following plugins:
- epaydk (API no longer functional)
- moip (will be moved to separate package)
- transferuj.pl (API no longer functional)
- przelewy24.pl (API needs update, but no sandbox available anymore)

	Dropped support for Django <= 1.10

	Provide support for Django 2.0

Version 1.7.5

	Fixed przelewy24 params (py3 support)

Version 1.7.4

	Added default apps config getpaid.apps.Config

	Fixed and refactoring for utils.get_domain, build_absolute_uri,
settings.GETPAID_SITE_DOMAIN

	Refactored register_to_payment

	Refactored build_absolute_uri

	Refactored and fixes in transferuj backend
- payment.paid_on uses local TIMEZONE now as opposed to UTC
- changed params
- add post method to SuccessView and FailureView

	Added test models factories

	Dropped support for Django <=1.6

Version 1.7.3

	Refactored Dotpay

	Moved all existing tests to test_project and added more/refactored

	Fixed utils.import_module

	Fixed Payu and tests (py3 support)

	Updated docs

Version 1.7.2

	Updated coveragerc and travis.yml

	Added missing mgiration for Payment.status

Version 1.7.1

	Added coveragerc

	Updated README

	Added settings.GETPAID_ORDER_MODEL

	Added epay.dk support

	Added initial django migration

Version 1.7.0

	Refactoring to support for py3 (3.4)

	Change imports to be relative - fixes #43

	Add USD to supported currencies in Paymill backend (thanks lauris)

	Fix a few typos

Version 1.6.0

	Adding paymill backend

	PEP 8 improvements

	Adding support for django 1.5 in test project (+ tests)

	Fixed issue on utils.import_name to allow packages without parents

	Adding dependency to pytz for przelewy24 backend

	Refactoring of PayU backend (xml->txt api, better logging) and adding support for non-auto payment accepting

Version 1.5.1

	Fixing packaging that causes errors with package installation

Version 1.5.0

	Adding new backend - Przelewy24.pl (thanks to IssueStand.com funding)

	Fixing packaging package data (now using only MANIFEST.in)

Version 1.4.0

	Cleaned version 1.3 from minor issues before implementing new backends

	Brazilian backend moip

	Updated PL translation

	Added brazilian portuguese translation

	Storing payment external id and description in the database (warning: database migration needed!)

	Transferuj backend can now predefine interface language when redirecting

	POST method supported on redirect to payment

Version 1.3.0

	Logotypes support in new payment form

	Fixing packaging

Version 1.2

	Dotpay backend added

	Hooks for backends to accept email and user name

	Refactoring

Version 1.1

	PayU backend added

	Lots of documentation

	Refactoring

Version 1.0

	First stable version

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | U

A

 	
 	AbstractOrder (class in getpaid.models)

 	AbstractPayment (class in getpaid.models)

 	accepted_currencies (getpaid.processor.BaseProcessor attribute)

 	
 	amount_locked (getpaid.models.AbstractPayment attribute)

 	amount_paid (getpaid.models.AbstractPayment attribute)

 	amount_refunded (getpaid.models.AbstractPayment attribute)

 	amount_required (getpaid.models.AbstractPayment attribute)

B

 	
 	backend (getpaid.models.AbstractPayment attribute)

 	
 	BaseProcessor (class in getpaid.processor)

C

 	
 	cancel_refund() (getpaid.models.AbstractPayment method)

 	(getpaid.processor.BaseProcessor method)

 	charge() (getpaid.models.AbstractPayment method)

 	(getpaid.processor.BaseProcessor method)

 	confirm_charge_sent() (getpaid.models.AbstractPayment method)

 	
 	confirm_lock() (getpaid.models.AbstractPayment method)

 	confirm_payment() (getpaid.models.AbstractPayment method)

 	confirm_prepared() (getpaid.models.AbstractPayment method)

 	confirm_refund() (getpaid.models.AbstractPayment method)

 	created_on (getpaid.models.AbstractPayment attribute)

 	currency (getpaid.models.AbstractPayment attribute)

D

 	
 	description (getpaid.models.AbstractPayment attribute)

 	
 	display_name (getpaid.processor.BaseProcessor attribute)

E

 	
 	external_id (getpaid.models.AbstractPayment attribute)

F

 	
 	fail() (getpaid.models.AbstractPayment method)

 	fetch_and_update_status() (getpaid.models.AbstractPayment method)

 	fetch_payment_status() (getpaid.processor.BaseProcessor method)

 	
 	fetch_status() (getpaid.models.AbstractPayment method)

 	fraud_message (getpaid.models.AbstractPayment attribute)

 	fraud_status (getpaid.models.AbstractPayment attribute)

G

 	
 	get_absolute_url() (getpaid.models.AbstractOrder method)

 	get_all_supported_currency_choices() (getpaid.registry.PluginRegistry method)

 	get_backends() (getpaid.registry.PluginRegistry method)

 	get_buyer_info() (getpaid.models.AbstractOrder method)

 	get_choices() (getpaid.registry.PluginRegistry method)

 	get_description() (getpaid.models.AbstractOrder method)

 	get_form() (getpaid.models.AbstractPayment method)

 	(getpaid.processor.BaseProcessor method)

 	
 	get_items() (getpaid.models.AbstractOrder method)

 	(getpaid.models.AbstractPayment method)

 	get_our_baseurl() (getpaid.processor.BaseProcessor static method)

 	get_processor() (getpaid.models.AbstractPayment method)

 	get_return_url() (getpaid.models.AbstractOrder method)

 	get_template_names() (getpaid.models.AbstractPayment method)

 	get_total_amount() (getpaid.models.AbstractOrder method)

 	get_unique_id() (getpaid.models.AbstractPayment method)

H

 	
 	handle_paywall_callback() (getpaid.models.AbstractPayment method)

 	(getpaid.processor.BaseProcessor method)

I

 	
 	id (getpaid.models.AbstractPayment attribute)

 	
 	is_ready_for_payment() (getpaid.models.AbstractOrder method)

L

 	
 	last_payment_on (getpaid.models.AbstractPayment attribute)

 	
 	logo_url (getpaid.processor.BaseProcessor attribute)

M

 	
 	mark_as_paid() (getpaid.models.AbstractPayment method)

 	
 	mark_as_refunded() (getpaid.models.AbstractPayment method)

O

 	
 	ok_statuses (getpaid.processor.BaseProcessor attribute)

 	
 	order (getpaid.models.AbstractPayment attribute)

P

 	
 	PluginRegistry (class in getpaid.registry)

 	prepare_form_data() (getpaid.processor.BaseProcessor method)

 	prepare_transaction() (getpaid.models.AbstractPayment method)

 	(getpaid.processor.BaseProcessor method)

 	
 	prepare_transaction_for_rest() (getpaid.models.AbstractPayment method)

 	production_url (getpaid.processor.BaseProcessor attribute)

R

 	
 	register() (getpaid.registry.PluginRegistry method)

 	
 	release_lock() (getpaid.models.AbstractPayment method)

 	(getpaid.processor.BaseProcessor method)

S

 	
 	sandbox_url (getpaid.processor.BaseProcessor attribute)

 	slug (getpaid.processor.BaseProcessor attribute)

 	
 	start_refund() (getpaid.models.AbstractPayment method)

 	(getpaid.processor.BaseProcessor method)

 	status (getpaid.models.AbstractPayment attribute)

U

 	
 	urls() (getpaid.registry.PluginRegistry property)

 nav.xhtml

 Table of Contents

 		
 Welcome to django-getpaid’s documentation!

 		
 Installation & Configuration

 		
 Get it from PyPI

 		
 Install at least one plugin

 		
 Enable app and plugin

 		
 Create Order model

 		
 Tell getpaid what model handles orders

 		
 (Optional) Provide custom Payment model

 		
 Add getpaid to urls

 		
 Provide config for plugins

 		
 Prepare views and business logic

 		
 Next steps

 		
 Plugin catalog

 		
 PayU

 		
 Settings

 		
 Core settings

 		
 GETPAID_ORDER_MODEL

 		
 GETPAID_PAYMENT_MODEL

 		
 Backend settings

 		
 Optional settings

 		
 POST_TEMPLATE

 		
 POST_FORM_CLASS

 		
 SUCCESS_URL

 		
 FAILURE_URL

 		
 HIDE_LONELY_PLUGIN

 		
 VALIDATORS

 		
 Customization - Payment API

 		
 Basic Order API

 		
 Basic Payment API

 		
 Creating payment plugins

 		
 Detailed API

 		
 Plugin registry

 		
 Internal API

 		
 Planned features

 		
 History

 		
 Version 2.2.0 (2020-05-03)

 		
 Version 2.1.0 (2020-04-30)

 		
 Version 2.0.0 (2020-04-18)

 		
 Version 1.8.0 (2018-07-24)

 		
 Version 1.7.5

 		
 Version 1.7.4

 		
 Version 1.7.3

 		
 Version 1.7.2

 		
 Version 1.7.1

 		
 Version 1.7.0

 		
 Version 1.6.0

 		
 Version 1.5.1

 		
 Version 1.5.0

 		
 Version 1.4.0

 		
 Version 1.3.0

 		
 Version 1.2

 		
 Version 1.1

 		
 Version 1.0

_static/file.png

_static/minus.png

_static/plus.png

